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Abstract. Wheat Stripe Rust is a devastating fungal disease that is the largest limitation to wheat production

and threatens the global food supply. In this work, we proposed a mathematical system of ordinary differential

equations to model the wheat Stripe Rust transmission dynamics. First, we showed the feasible region, the

positivity of the solution, the model’s equilibrium points and the basic reproduction number. Second, we used the

Pontryagin maximum principle to extend the basic system into an optimal control system by embedding three

control measures (resistant cultivars, fungicides and cultural practices). Finally, we used a numerical simulation

of the optimality system to demonstrate the thorough impacts of resistant wheat cultivars, fungicide treatments

and cultural practices in reducing the epidemic.
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1 Introduction

Wheat is undoubtedly the world’s most important food crop (Morris & Rose, 1996), providing
food for billions of people. World wheat production stands at around 781 million metric tons
(MMT) during the 2022–2023 year (USDA’s). On average, about 20 ´ 40% of global wheat
production is lost due to diseases and pests (Agrios, 2005), which cost the global economy 220
billion dollars each year. Of these diseases, rust is among the most important pathogens, causing
a continuous threat to wheat production. Wheat rust diseases (Li & Zeng, 2002) are among
the oldest plant diseases known to humans. The rusts are a group of fungal parasite diseases
affecting a wide variety of plants, and have the most complicated life cycles of all fungi (Kolmer
et al., 2009). There are many types of individual rust diseases (Salgado et al., 2016). One of
which is Stripe Rust, is one of the most important wheat diseases that can cause up to 100%
yield loss.

Stripe Rust, also known as yellow rust YR (because of its spore color during its infection
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cycle), is a foliar disease of cereals caused by a fungus called Puccinia striiformis (Rodriguez-
Algaba et al., 2014) (Pst is a biotrophic fungus that depends on a living host for its development
and reproduction (Chen et al., 2014)), is a major infectious disease of soft wheat crops, barley,
and durum wheat, which has significantly adverse effects on yield and quality. Yield losses reach
up to 70% in cases of severe infection, leading to global losses of over 5 million tons of wheat
(Wellings, 2011; Beddow et al., 2015).

In order to work with the Stripe Rust fungus , we must understand how it reproduces and
survives (Figure 1). For the Puccinia striiformis (Pst) fungus to replicate, it must go through
two phases on two unrelated plants; it alternates between the primary host for an asexual phase
in autumn and the alternate host for a sexual phase in spring (Jin et al., 2010). The primary
host of these diseases is wheat while the alternate host is typically a weed or native plant. For
example, barberry (Berberis vulgaris) serves as the main alternate host for the Stripe Rust fun-
gus. The sexual phase starts at the end of summer, when the spores (Basidiospores) produced

Figure 1: Life cycle of Puccinia striiformis

on wheat infect barberry leaves (Rodriguez-Algaba et al., 2017), Puccinia striiformis then gen-
erates pycniospores on the adaxial surface of leaves, ensuring its reproduction and survival even
at very low temperatures (down to ´100Cq. In spring, as the weather becomes cool and damp,
the disease is dispersed through wind-blown spores, and the fungus resumes its development
to initiate the asexual phase. Spores (aeciospores) produced on barberry plants infect wheat
leaves, initiating secondary contamination through the production of new uredospores. The
fungus penetrates the cell wall and enters the plant’s tissue to extract nutrients, causing cell
death. This process (phase) takes from 6 to 10 days or longer depending on temperature, until
the symptoms of Stripe Rust appear on the leaf surface.When the disease develops on wheat, the
spores (uredospores) produced can cause auto-infection where spores infect the same plants on
which they were produced through simple contact or be carried by the wind. This spore stage
of the life cycle is known as the repeating stage and is responsible for the rapid development of
disease outbreaks.

The management of Stripe Rust fungus can be achieved (El Khoury & Makkouk, 2010; Van
Der Plank, 1963) through three main control options (Chen, 2005): cultivating resistant wheat
cultivars, applying fungicide seed treatments and foliar fungicide treatments before the disease
has developed significantly, and adjusting certain cultural practices, such as timely planting,
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sanitation, and crop rotation. By implementing these measures, farmers can minimize the
impact of Puccinia striiformis and ensure the sustainable production of cereal crops (Chen &
Kang, 2017).

Over the years, mathematical models have proved to be reliable and powerful tools used
to understand the dynamics of disease transmission and in decision-making processes regarding
intervention programs for implementing control measures to prevent and minimize the impact
of infectious diseases. Mathematical models can also be employed to analyze the dynamics of
plant diseases (Bazarra et al., 2022). Many mathematical models have been constructed and
analyzed to describe the transmission dynamics of various plant diseases.

The structure of this paper is arranged as follows: In Section 2, we propose a formulation
of the Stripe Rust model, stating the definitions of the various parameters of the model. In
Section 3, the model properties and the analysis of the equilibrium points are illustrated. In
Section 4, we state the control problem of the Stripe Rust transmission model, then we apply
Pontryagin’s Maximum Principle to find the necessary conditions for the optimal control. In
Section 5, we conduct the numerical simulation in Matlab to prove our theoretical results, and
a brief discussion is also provided in this section. Finally, in Section 6, we give conclusions.

2 The Model Formulation and Description

2.1 Formulation

In this section, we developed a Stripe Rust transmission dynamics model in which the total main
plant population is represented by the SEIRS model, while the population of the alternate host-
plants is described by the ShEhIh model.

� The total population of main plants at time t, denoted by P ptq is classified into the
susceptible plants class (S ), exposed/latent plants class (E ), infectious plants class (I ), and
recovered plants class (R).
Thus, the total population of main plants is given by

P ptq “ Sptq ` Eptq ` Iptq `Rptq.

� The total alternative host-plants population at time t, denoted by Hptq, is subdivided
into the susceptible alternative host-plants (Sh), exposed/latency alternative host-plants (Eh),
and the infectious alternative host-plants (Ih).
Hence, the total population of alternative host-plants is given by

Hptq “ Shptq ` Ehptq ` Ihptq.

The population flow among these compartments is presented in Figure 2.

Figure 2: Diagram of Stripe Rust transmission dynamics
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Based on the assumptions and the diagram in Figure 2, the deterministic model that de-
scribes the transmission dynamics of Stripe Rust disease is represented by the following nonlinear
differential equations
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dS

dt
“ Λ´ µS ´ pβ1I ` β2IhqS ` νR, Sp0q “ S0 ě 0

dE

dt
“ pβ1I ` β2IhqS ´ pσα` µqE, Ep0q “ E0 ě 0

dI

dt
“ σαE ´ pγ ` d` µqI, Ip0q “ I0 ě 0

dR

dt
“ γI ´ pν ` µqR, Rp0q “ R0 ě 0

dSh
dt

“ Λh ´ β3ISh ´ µhSh, Shp0q “ Shp0q ě 0

dEh
dt

“ β3ISh ´ pαh ` µhqEh, Ehp0q “ Ehp0q ě 0

dIh
dt
“ αhEh ´ µhIh, Ihp0q “ Ihp0q ě 0.

(1)

We assume that all of the parameters in the model are positive.

2.2 Model Interpretation

The values of the different parameters used in the model (1) are shown in the Table 1.
� We have deemed that the parameters listed are positive.
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Table 1: The definitions of parameters in model (1)

Parameter Description

Λ The birth rate.

Λh Replenishing rate of alternative host plants.

1{{{σ Incubation period.

β1 The rate at which the infected main host plants transmits the Pst infections to the
susceptible main host plants.

β2 The rate at which the infected alternative host plants transmits the Pst infections to
the susceptible main host plants.

β3 The rate at which the infected main host plants transmits the Pst infections to the
susceptible alternative host plants.

α The rate at which the exposed main host plants complete their incubation period and
become infected.

αh The rate at which the alternative host plants that have been exposed become infected.

γ Recovery rate of Strip Rust from infectious main plants.

µ The natural deaths rate in all classes of main plants.

µh Death rate of alternative host plants.

d Death rate of infected main plants due to the disease.

ν Rate at which recovered main plants returns back to susceptible class (grassy weeds).

3 Mathematical Analysis of the Model

3.1 Positivity of the Solution

The Stripe Rust model (1) has non-negative initial data pSp0q, Ep0q, Ip0q, Rp0q, Shp0q, Ehp0q,
Ihp0qq ě 0 for t ě 0.

Consider the first equation from the system (1)

dS

dt
“ Λ´ µS ´ pβ1I ` β2IhqS ` νR. (2)

This leads to
dS

dt
ě ´pµ` pβ1I ` β2IhqqS. (3)

Integrating equation (3), we obtain

Sptq ě Sp0qe´pµ`β1I`β2Ihqt ą 0. (4)

Thus, Sptq will be non-negative for t ě 0.

Similarly, we can prove the other state variables pEptq, Iptq, Rptq, Shptq, Ehptq, Ihptqq ą 0 for
all t ě 0.

Consequently, the Stripe Rust transmission model is both epidemiologically meaningful.

3.2 Invariant Region

The model (1) involves two types of plant populations, the main plants population P ptq and the
alternative host-plants population Hptq.
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The total populations of them from system (1) are given respectively by

#

P ptq “ Sptq ` Eptq ` Iptq `Rptq,

Hptq “ Shptq ` Ehptq ` Ihptq,
(5)

Differentiation of (5), with respect to time gives

$

’

&

’

%

dP

dt
“
dSptq

dt
`
dEptq

dt
`
dIptq

dt
`
dRptq

dt
,

dH

dt
“
dShptq

dt
`
dEhptq

dt
`
dIhptq

dt
,

(6)

Adding the first four equations and the last three equations of the model gives

$

’

&

’

%

dP

dt
“ Λ´ µP ´ dI ď Λ´ µP,

dH

dt
“ Λh ´ µhH,

(7)

By applying Birkhoff and Rota’s (1982) theory of differential inequality, obtain the
following result

0 ď P ptq ď P p0qe´µt `
Λ

µ
p1´ e´µtq and 0 ď Hptq ď Hp0qe´µht `

Λh
µh
p1´ e´µhtq.

And therefore,

P ptq ď
Λ

µ
and Hptq ď

Λh
µh

as tÑ `8.

The invariant region of system (1) is given by

Ω “ Ω1 ` Ω2,

where Ω1 is the invariant region for main plants population, and Ω2 is the invariant region for
the alternative host-plants population.
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%

Ω1 “
 

pS,E, I,Rq P R4
` : P ptq ď

Λ

µ

(

,

Ω2 “
 

pSh, Eh, Ihq P R3
` : Hptq ď

Λh
µh

(

,

Thus, the system’s invariant region of model (1) is given by

Ω “
 

pS,E, I,R, Sh, Eh, Ihq P R7
` : P ptq ď

Λ

µ
, Hptq ď

Λh
µh

(

.

We can deduce that all feasible solutions of the system (1) are bounded in a positive invariant
region Ω (Hethcote, 2000).

3.3 Disease Free Equilibrium (DFE)

By setting all equations of model (1) equal to zero with E “ 0, I “ 0 and Eh “ 0, Ih “ 0, we
obtain the single Stripe Rust-free equilibrium point defined by

E0 “ pS
0, E0, I0, R0, S0

h, E
0
h, I

0
hq “ p

Λ

µ
, 0, 0, 0,

Λh
µh
, 0, 0q.
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3.4 Basic Reproduction Number

The basic reproduction number R0 (Diekmann et al., 1990; Hyman & Li, 2000) is defined as the
average number of secondary infection caused by a primary infection during a given time period
(Van den Driessche & Watmough, 2002).

To determine R0, we need to define the next generation matrix (NGM). A next-generation
matrix KL consists of two parts: the matrix U corresponds to transmissions and the inverse of
matrix V corresponds to transitions. We consider four compartments E, I, Eh and Ih which
contribute to new infections or the secondary cases of main plants and alternative host-plants;
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dE

dt
“ pβ1I ` β2IhqS ´ pσα` µqE,

dI

dt
“ αE ´ pγ ` d` µqI,

dEh
dt

“ β3ISh ´ pαh ` µhqEh,

dIh
dt
“ αhEh ´ µhIh.

(8)

Let Z “ pE, I,Eh, Ihq
T , our system can be written as Z

1

“ u´ v.
The new infection matrix u and the transition matrix v are defined by the column matrices

u “

¨

˚

˚

˚

˚

˚

˚

˝

pβ1I ` β2IhqS

0

β3ISh

0

˛

‹

‹

‹

‹

‹

‹

‚

and v “ ´

¨

˚

˚

˚

˚

˚

˚

˝

pσα` µqE

pγ ` d` µqI ´ αE

pαh ` µhqEh

µhIh ´ αhEh

˛

‹

‹

‹

‹

‹

‹

‚

The Jacobian of these matrices at Strip Rust-free equilibrium points are given by

U “

¨

˚

˚

˚

˚

˚

˚

˝

0 β1Λ{µ 0 β2Λ{µ

0 0 0 0

0 β3Λh{µh 0 0

0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

and V “

¨

˚

˚

˚

˚

˚

˚

˝

´pσα` µq 0 0 0

σα ´pγ ` d` µq 0 0

0 0 ´pαh ` µhq 0

0 0 αh ´µh

˛

‹

‹

‹

‹

‹

‹

‚

Where

V ´1 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´1

pσα` µq
0 0 0

´σα

pγ ` d` µqpµ` σαq

´1

pγ ` d` µq
0 0

0 0
´1

pαh ` µhq
0

0 0
´αh

µhpαh ` µhq

´1

µh

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Multiplying U with V ´1

UV ´1 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

´β1σαΛ

µpσα` µqpγ ` d` µq

´β2Λ

µpγ ` d` µq

´β1αhΛ

µµhpαh ` µhq

´β2Λ

µµh

0 0 0 0

´β3σαΛh
µhpσα` µqpγ ` d` µq

´β3Λh
µhpγ ` d` µq

0 0

0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚
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Hence the NGM (Diekmann et al., 2010) with large domain KL is four-dimensional and given
by

KL “ ´UV
´1 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

β1σαΛ

µpσα` µqpγ ` d` µq

β2Λ

µpγ ` d` µq

β1αhΛ

µµhpαh ` µhq

β2Λ

µµh

0 0 0 0

β3σαΛh
µhpσα` µqpγ ` d` µq

β3Λh
µhpγ ` d` µq

0 0

0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

The dominant eigenvalue corresponding to the Spectral radius of this matrix KL is equal to R0

the basic reproduction number, where ρpKLq “ R0

R0 “
β1σαΛ

2µpσα` µqpγ ` d` µq

˜

1`

d

1`
4β3Λhαhµpσα` µqpγ ` d` µq

β1µ2hΛασpαh ` µhq

¸

(9)

Furthermore, model (1) has the endemic equilibrium E1 “ pS
˚, E˚, I˚, R˚, S˚h , E

˚
h , I

˚
h q.

3.5 Endemic Equilibrium Point

The Endemic Equilibrium E1 “ pS
˚, E˚, I˚, R˚, S˚h , E

˚
h , I

˚
h q of system (1) is determined by

S˚ “
1

µ

ˆ

Λ` ν
γpΛ´ µP q

dpµ` νq
´ pσα` µq

pγ ` µ` dqpΛ´ µP q

σαd

˙

,

E˚ “
pγ ` µ` dqpΛ´ µP q

σαd
,

I˚ “
pΛ´ µP q

d
,

R˚ “
γpΛ´ µP q

dpµ` νq
,

S˚h “
dΛh

pβ3pΛ´ µP q ` µhdq
,

E˚h “
Λh

pαh ` µhqp1´
µhd

β3pΛ´ µP q
q

,

I˚h “
αhΛh

µhpαh ` µhqp1´
µhd

β3pΛ´ µP q
q

.

The endemic equilibrium E1 exists if R0 ą 1.

4 Optimal Control Model

In this section, we will analyze and extend the Stripe Rust transmission model (1) using optimal
control strategies.

4.1 Problem Formulation

Our goal is to minimize the impact of Puccinia striiformis by reducing the number of exposed
and infected plants in the crops. To achieve this, we extended the Stripe Rust model (1) to an
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optimal control problem to determine strategic control decisions using a mathematical model of
biological situations (Lenhart & Workman, 2007).

By incorporating the following control measures into the model (1);

• c1 - Adjusting cultural practices.

• c2 - Represent the control on the use a specific type of fungicide that controls disease.

• c3 - Growing resistant cultivars (choosing a variety resistant to Stripe Rust).

The optimal control model is formulated as the following nonlinear systems
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dS

dt
“ Λ´ p1´ c1qpβ1I ` β2IhqS ´ pc2 ` µqS ` νR,

dE

dt
“ p1´ c1qpβ1I ` β2IhqS ´ pµ` σαqE,

dI

dt
“ σαE ´ pγ ` d` µ` c3qI,

dR

dt
“ pγ ` c3qI ´ pµ` νqR,

dSh
dt

“ Λh ´ β3ISh ´ µhSh,

dEh
dt

“ β3ISh ´ pαh ` µhqEh,

dIh
dt
“ αhEh ´ µhIh,

(10)

The effect of the optimal control model is determined by the following objective function
(Lenhart & Workman, 2007)

Jpc1, c2, c3q “

ż tend

0

ˆ

A1E `A2I `
1

2

`

B1c
2
1 `B2c

2
2 `B3c

2
3

˘

˙

dt, (11)

Where

• tend denoted the terminal time.

• A1 and A2 are the positive constants coefficients for the exposed and infected plants
respectively.

• The constants B1, B2 and B3 are the weight constants coefficients for the control variables
c1, c2 and c3 respectively.

Our main goal of this problem is to find an optimal control functions c˚i ptq for i “ p1, . . . , 3q.

Jpc˚1 , c
˚
2 , c

˚
3q “ min

 

Jpc1, c2, c3q, pc1, c2, c3q P C
(

.

Where C is set of admissible control to the model (10) (The control set).

C “
 

pc1p.q, c2p.q, c3p.qq; 0 ď c1ptq, c2ptq, c3ptq ď 1,@t P r0, tends
(

.

4.2 Existence of Optimal Control Problem

In this part, we prove the existence of an optimal control triples that optimize the objective
functional (11) by applying the theorem.

Theorem 1. There exists an optimal control c˚ “ pc˚1 , c
˚
2 , c

˚
3q P C such that; the control model

(10) with initial conditions at t “ 0 and Jpc˚1 , c
˚
2 , c

˚
3q “ min

 

Jpc1, c2, c3q, pc1, c2, c3q P C
(

.
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Proof. The existence of an optimal control pair is proved under the following conditions given
in (Fleming & Rishel, 1975):

1. The control set C is convex, bounded and closed in L2p0, tendq.
� The set C is bounded closed and convex (Beck, 2014) by definition, so the condition is
verified.

2. The control set and control variables is non-empty.
� These conditions are verified by a result of (Lukes, 2003) which ensures the existence
of solutions for the state system (10) with constant coefficients.

3. The right side of the state system is bounded by a linear function of control variables
depending on time and state variables.
� The state system (10) is clearly linear in control variables c1, c2 and c3 with coefficients
depending on state variables.

4. The integrand of the objective functional (11) is convex on the C and there exist positive
numbers Q1, Q2 and a constant ε ą 1 such that the integrand of the objective function is

bounded by Q1

`

|c1|2 ` |c2|2 ` |c3|2
˘ε{2

´Q2.

� The integrand of the objective functional A1E `A2I `
1

2

3
ÿ

i“1

Bic
2
i is the sum of convex

functions (Chong & Zak, 2004) and hence convex with respect to control variables.
� Lastly, we have

A1E `A2I `
1

2

3
ÿ

i“1

Bic
2
i ě

1

2

`

B1c
2
1 `B2c

2
2 `B3c

2
3

˘

ě
1

2

`

B1c
2
1 `B2c

2
2 `B3c

2
3

˘ε{2
´Q2,

ě Q1

`

|c1|2 ` |c2|2 ` |c3|2
˘ε{2

´Q2.

Therefore, the state variables are bounded and the existence of optimal control of the model
(10) is concluded.

4.3 Characterization of the Optimal Control

In this part, we present optimality conditions for the optimal control problem (10) and detail its
properties. On the basis of Pontryagin’s Maximum Principle (PMP) (Pontryagin et al., 1962),
We define the Hamiltonian function of the optimal control problem (10) as follows

H “ LpE, I, ciq ` λj

ˆ

dS

dt
`
dE

dt
`
dI

dt
`
dR

dt
`
dSh
dt

`
dEh
dt

`
dIh
dt

˙

. (12)

With the Lagrangian:

LpE, I, ciq “ A1E `A2I `
1

2

3
ÿ

i“1

Bic
2
i . (13)
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Substituting the Lagrangian (13) and the optimal control model (10) into the Hamiltonian
(12), we obtain

H “ A1E `A2I `
1

2

`

B1c
2
1 `B2c

2
2 `B3c

2
3

˘

` λ1

”

Λ´ p1´ c1qβ1SI ´ p1´ c1qβ2SIh ´ pc2 ` µqS ` νR
ı

` λ2

”

p1´ c1qβ1SI ` p1´ c1qβ2SIh ´ pµ` σαqE
ı

` λ3

”

σαE ´ pγ ` d` µ` c3qI
ı

` λ4

”

pγ ` c3qI ´ pµ` νqR
ı

` λ5

”

Λh ´ pβ3I ` µhqSh

ı

` λ6

”

β3ISh ´ pαh ` µhqEh

ı

` λ7

”

αhEh ´ µhIh

ı

.

(14)

Where the symbols λj for j “ p1, . . . , 7q represent the adjoint variables associated to the state
variables.

For optimized solution px, cq of optimal control problem (10), D a non-trivial vector function
λptq “ pλ1ptq, . . . , λ7ptqq satisfying the following equations

dx

dt
“
B

Bλ
Hpt, x, c, λq,

0 “
BHpt, x, c, λq

Bc
.

λ
1

“ ´
B

Bx
Hpt, x, c, λq

(15)

Where x “ pS,E, I,R, Sh, Eh, Ihq and c “ pc1, c2, c3q.
Therefore, we can now apply the necessary conditions to the Hamiltonian H.

The adjoint system is determined by applying the first and third equations in (15) into (14),
with respect to each state variables
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

dλ1ptq

dt
“ ´

BH

BS
“ pλ1 ´ λ2qp1´ c1qpβ1I ` β2Ihq ` λ1pc2 ` µq,

dλ2ptq

dt
“ ´

BH

BE
“ ´A1 ` λ2pµ` σαq ´ λ3σα,

dλ3ptq

dt
“ ´

BH

BI
“ ´A2 ` pλ1 ´ λ2qp1´ c1qβ1S ` pλ3 ´ λ4qpγ ` c3q ` λ3pd` µq ` pλ5 ´ λ6qβ3Sh,

dλ4ptq

dt
“ ´

BH

BR
“ νpλ4 ´ λ1q ` λ4µ,

dλ5ptq

dt
“ ´

BH

BSh
“ pλ5 ´ λ6qβ3I ` λ5µh,

dλ6ptq

dt
“ ´

BH

BEh
“ λ6pαh ` µhq ´ λ7αh,

dλ7ptq

dt
“ ´

BH

BIh
“ pλ1 ´ λ2qp1´ c1qβ2S ` λ7µh.

(16)
With transversality conditions,

λjptendq “ 0, for j “ p1, . . . , 7q.
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To obtain the optimal control value, we apply the second equation in (15) by the partial
derivative of Hamiltonian (14) with respect to control variable

BH

Bci
“ 0 , for i “ 1, 2, 3.

Which implies that

BH

Bc1
“ B1c1 ` Spλ1 ´ λ2qpβ1I ` β2Ihq “ 0,

BH

Bc2
“ B2c2 ´ λ1S “ 0,

BH

Bc3
“ B3c3 ` Ipλ4 ´ λ3q “ 0.

(17)

From (17), we have the controls

c˚1 “
Spλ2 ´ λ1qpβ1I ` β2Ihq

B1
,

c˚2 “
λ1S

B2
,

c˚3 “
Ipλ3 ´ λ4q

B3
.

(18)

Finally, the optimal controls c˚ “ pc˚1 , c
˚
2 , c

˚
3q with the boundary condition can be written as

c˚1 “ max

ˆ

 

0,min
 

1,
Spλ2 ´ λ1qpβ1I ` β2Ihq

B1

((

˙

,

c˚2 “ max

ˆ

 

0,min
 

1,
λ1S

B2

((

˙

,

c˚3 “ max

ˆ

 

0,min
 

1,
Ipλ3 ´ λ4q

B3

((

˙

.

Next, we will see the simulation of the optimality system (10).

5 Numerical Simulation

Wheat Stripe Rust poses a significant threat to global wheat production, jeopardizing the sta-
bility of the world’s food supply. This study aims to provide a precise understanding of disease
dynamics and, more importantly, to optimize control strategies for mitigating the impact of
wheat Stripe Rust, using mathematical modeling and optimal control systems.

In this section, we present numerical simulations (Shampine et al., 2003) describing the dy-
namics of the respective plant compartments with and without control. This demonstration
aims to showcase the effectiveness of our strategy in mitigating the impact of Stripe Rust on ce-
real crops. Through numerical simulations, we highlight the tangible effects of control strategies
represented in three pivotal measures: resistant cultivars, fungicides, and cultural practices.

Additionally, we provide valuable insights for policymakers, researchers, and practitioners
aiming to enhance wheat crop resilience and ensure global food security in the face of the
widespread threat posed by wheat Stripe Rust.
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5.1 Graphical Results

ˇ Without controls: In order to demonstrate the efficiency of model (1), we present graphical
results without controls, allowing us to observe how the growth results align with reality to some
extent (see Figures 3 and 4).

Figure 3: The graphical results of the main plants without controls

Figure 4: The graphical results of the alternative host-plants without controls
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ˇ With controls: Using the system (10), we implement all the control variables proposed at
the same time, we analyzed the impact of growing resistant cultivars c1, fungicide treatments c2,
and adjusting some cultural practices c3. The resulting graphical representations are displayed
in the following Figures.

Figure 5: The graphical results of the main plants with controls

Figure 6: The graphical results of the alternative host-plants with controls

5.2 Discussion of the results

‚ Looking at Figure 3 and 5.
Analyzing the graphical representations provides intriguing insights into the effectiveness of
control measures. From figures 3(a) and 3(b), it is clear that the number of exposed and
infected plants exhibits an increasing trajectory in the absence of any control interventions.
This confirms that Stripe Rust fungus infection poses a major threat to crops, as it can cause
significant losses in productivity and financial returns for farmers, leading us to the need to
improve and intensify control efforts.

A remarkable result is shown in figures 5(a) and 5(b), where the addition of control measures
results in a notable and significant decrease in the number of exposed and infected plants. This
striking difference highlights the effectiveness of the implemented control measures and their
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direct impact in significantly mitigating the spread of infection among plant populations. It is
also important to note that while the number of plants recovered slowly increases in the absence
of control variables, this number increases considerably in the optimal system (Figure 5(c) ).
This reinforces the importance of rapid intervention in managing plant health and protecting
agricultural productivity.

‚ Looking at Figure 4 and 6.
The optimal control strategy for alternative host plants is shown in figures 6(e) and 6(f). Inter-
estingly, although control strategies are not directly applied to exposed and infected alternative
host plants, their numbers show a marked decrease compared to the case where these strategies
were not implemented (Figure 4). This decrease can most likely be attributed to changes in
certain specific cultural practices (c3). Indeed, additional analyses reveal that these modifica-
tions have a significant impact on the dynamics of alternative host plants, which highlights the
importance of taking into account specific cultural practices in the design of control strategies.
This underscores the need for a comprehensive understanding of the intricate relationships be-
tween control measures and specific plant species in agricultural systems.

6 Conclusion

In this paper, we develop a mathematical model of Stripe Rust disease using a deterministic
system of differential equations. Initially, we explore the feasible region and positivity of the
solution of the model. Subsequently, we determine the model’s equilibrium points and the basic
reproduction number using the next-generation matrix method.

Additionally, we extend the Stripe Rust transmission model to an optimal control problem
by incorporating three control strategies (resistant cultivars, fungicides, and cultural practices).
We utilize the Pontryagin maximum principle to derive the expression for optimal control.

Based on numerical analysis, we propose that the combination of cultivating resistant wheat
cultivars, implementing fungicide treatments prior to the onset of the disease, and adjusting
certain cultural practices is the most effective strategy for reducing the number of infected
wheat plants and effectively mitigating Stripe Rust.
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